A type of Map that has the additional guarantee that the iteration order of entries will be the order in which they were set().
type OrderedMap<K, V> extends Map<K, V>
The iteration behavior of OrderedMap is the same as native ES6 Map and JavaScript Object.
Note that OrderedMap
are more expensive than non-ordered Map
and may
consume more memory. OrderedMap#set
is amortized O(log32 N), but not
stable.
OrderedMap<K, V>(collection?: Iterable<[K, V]>): OrderedMap<K, V>
OrderedMap<V>(obj: {[key: string]: V}): OrderedMap<string, V>
OrderedMap.isOrderedMap(maybeOrderedMap: unknown): boolean
Returns a new OrderedMap also containing the new key, value pair. If an equivalent key already exists in this OrderedMap, it will be replaced while maintaining the existing order.
set(key: K, value: V): this
Map#set()
const { OrderedMap } = require('immutable')
const originalMap = OrderedMap({a:1, b:1, c:1})
const updatedMap = originalMap.set('b', 2)
originalMap
// OrderedMap {a: 1, b: 1, c: 1}
updatedMap
// OrderedMap {a: 1, b: 2, c: 1}run it
Note: set
can be used in withMutations
.
merge<KC, VC>(...collections: Array<Iterable<[KC, VC]>>): OrderedMap<K | KC, V | VC>
merge<C>(...collections: Array<{[key: string]: C}>): OrderedMap<K | string, V | C>
Map#merge()
Returns a new Map which excludes this key
.
delete(key: K): this
Map#delete()
remove()
Note: delete
cannot be safely used in IE8, but is provided to mirror
the ES6 collection API.
const { Map } = require('immutable')
const originalMap = Map({
key: 'value',
otherKey: 'other value'
})
// Map { "key": "value", "otherKey": "other value" }
originalMap.delete('otherKey')
// Map { "key": "value" }run it
Note: delete
can be used in withMutations
.
Returns a new Map which excludes the provided keys
.
deleteAll(keys: Iterable<K>): this
Map#deleteAll()
removeAll()
const { Map } = require('immutable')
const names = Map({ a: "Aaron", b: "Barry", c: "Connor" })
names.deleteAll([ 'a', 'c' ])
// Map { "b": "Barry" }run it
Note: deleteAll
can be used in withMutations
.
Returns a new Map containing no keys or values.
clear(): this
Map#clear()
const { Map } = require('immutable')
Map({ key: 'value' }).clear()
// Map {}run it
Note: clear
can be used in withMutations
.
update(key: K, notSetValue: V, updater: (value: V) => V): this
update(key: K, updater: (value: V | undefined) => V | undefined): this
update<R>(updater: (value: this) => R): R
Map#update()
Like merge()
, mergeWith()
returns a new Map resulting from merging
the provided Collections (or JS objects) into this Map, but uses the
merger
function for dealing with conflicts.
mergeWith(merger: (oldVal: V, newVal: V, key: K) => V,
...collections: Array<Iterable<[K, V]> | {[key: string]: V}>): this
Map#mergeWith()
const { Map } = require('immutable')
const one = Map({ a: 10, b: 20, c: 30 })
const two = Map({ b: 40, a: 50, d: 60 })
one.mergeWith((oldVal, newVal) => oldVal / newVal, two)
// { "a": 0.2, "b": 0.5, "c": 30, "d": 60 }
two.mergeWith((oldVal, newVal) => oldVal / newVal, one)
// { "b": 2, "a": 5, "d": 60, "c": 30 }run it
Note: mergeWith
can be used in withMutations
.
Like merge()
, but when two compatible collections are encountered with
the same key, it merges them as well, recursing deeply through the nested
data. Two collections are considered to be compatible (and thus will be
merged together) if they both fall into one of three categories: keyed
(e.g., Map
s, Record
s, and objects), indexed (e.g., List
s and
arrays), or set-like (e.g., Set
s). If they fall into separate
categories, mergeDeep
will replace the existing collection with the
collection being merged in. This behavior can be customized by using
mergeDeepWith()
.
mergeDeep(...collections: Array<Iterable<[K, V]> | {[key: string]: V}>): this
Map#mergeDeep()
Note: Indexed and set-like collections are merged using
concat()
/union()
and therefore do not recurse.
const { Map } = require('immutable')
const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })
const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })
one.mergeDeep(two)
// Map {
// "a": Map { "x": 2, "y": 10 },
// "b": Map { "x": 20, "y": 5 },
// "c": Map { "z": 3 }
// }run it
Note: mergeDeep
can be used in withMutations
.
Like mergeDeep()
, but when two non-collections or incompatible
collections are encountered at the same key, it uses the merger
function to determine the resulting value. Collections are considered
incompatible if they fall into separate categories between keyed,
indexed, and set-like.
mergeDeepWith(merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
...collections: Array<Iterable<[K, V]> | {[key: string]: V}>): this
Map#mergeDeepWith()
const { Map } = require('immutable')
const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })
const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })
one.mergeDeepWith((oldVal, newVal) => oldVal / newVal, two)
// Map {
// "a": Map { "x": 5, "y": 10 },
// "b": Map { "x": 20, "y": 10 },
// "c": Map { "z": 3 }
// }run it
Note: mergeDeepWith
can be used in withMutations
.
Returns a new OrderedMap with values passed through a
mapper
function.
map<M>(mapper: (value: V, key: K, iter: this) => M,
context?: unknown): OrderedMap<K, M>
Map#map()
OrderedMap({ a: 1, b: 2 }).map(x => 10 * x)
// OrderedMap { "a": 10, "b": 20 }
Note: map()
always returns a new instance, even if it produced the same
value at every step.
mapKeys<M>(mapper: (key: K, value: V, iter: this) => M,
context?: unknown): OrderedMap<M, V>
Map#mapKeys()
Collection.Keyed.mapKeys
mapEntries<KM, VM>(mapper: (entry: [K, V], index: number, iter: this) => [KM, VM] | undefined,
context?: unknown): OrderedMap<KM, VM>
Map#mapEntries()
Collection.Keyed.mapEntries
Flat-maps the OrderedMap, returning a new OrderedMap.
flatMap<KM, VM>(mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
context?: unknown): OrderedMap<KM, VM>
Map#flatMap()
Similar to data.map(...).flatten(true)
.
filter<F>(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): OrderedMap<K, F>
filter(predicate: (value: V, key: K, iter: this) => unknown,
context?: unknown): this
Map#filter()
partition<F, C>(predicate: (this: C, value: V, key: K, iter: this) => boolean,
context?: C): [OrderedMap<K, V>, OrderedMap<K, F>]
partition<C>(predicate: (this: C, value: V, key: K, iter: this) => unknown,
context?: C): [this, this]
Map#partition()
Returns a new Collection of the same type with only the entries for which
the predicate
function returns false.
filterNot(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
Collection#filterNot()
const { Map } = require('immutable')
Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0)
// Map { "a": 1, "c": 3 }run it
Note: filterNot()
always returns a new instance, even if it results in
not filtering out any values.
Returns a new Collection of the same type in reverse order.
reverse(): this
Collection#reverse()
Returns a new Collection of the same type which includes the same entries,
stably sorted by using a comparator
.
sort(comparator?: Comparator<V>): this
Collection#sort()
If a comparator
is not provided, a default comparator uses <
and >
.
comparator(valueA, valueB)
:
0
if the elements should not be swapped.-1
(or any negative number) if valueA
comes before valueB
1
(or any positive number) if valueA
comes after valueB
PairSorting
enum typeWhen sorting collections which have no defined order, their ordered
equivalents will be returned. e.g. map.sort()
returns OrderedMap.
const { Map } = require('immutable')
Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => {
if (a < b) { return -1; }
if (a > b) { return 1; }
if (a === b) { return 0; }
});
// OrderedMap { "a": 1, "b": 2, "c": 3 }run it
Note: sort()
Always returns a new instance, even if the original was
already sorted.
Note: This is always an eager operation.
Like sort
, but also accepts a comparatorValueMapper
which allows for
sorting by more sophisticated means:
sortBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): this
Collection#sortBy()
const { Map } = require('immutable')
const beattles = Map({
John: { name: "Lennon" },
Paul: { name: "McCartney" },
George: { name: "Harrison" },
Ringo: { name: "Starr" },
});
beattles.sortBy(member => member.name);run it
Note: sortBy()
Always returns a new instance, even if the original was
already sorted.
Note: This is always an eager operation.
Returns a Map
of Collection
, grouped by the return
value of the grouper
function.
groupBy<G>(grouper: (value: V, key: K, iter: this) => G,
context?: unknown): Map<G, this>
Collection#groupBy()
Note: This is always an eager operation.
const { List, Map } = require('immutable')
const listOfMaps = List([
Map({ v: 0 }),
Map({ v: 1 }),
Map({ v: 1 }),
Map({ v: 0 }),
Map({ v: 2 })
])
const groupsOfMaps = listOfMaps.groupBy(x => x.get('v'))
// Map {
// 0: List [ Map{ "v": 0 }, Map { "v": 0 } ],
// 1: List [ Map{ "v": 1 }, Map { "v": 1 } ],
// 2: List [ Map{ "v": 2 } ],
// }run it
Returns a new Map having set value
at this keyPath
. If any keys in
keyPath
do not exist, a new immutable Map will be created at that key.
setIn(keyPath: Iterable<unknown>, value: unknown): this
Map#setIn()
const { Map } = require('immutable')
const originalMap = Map({
subObject: Map({
subKey: 'subvalue',
subSubObject: Map({
subSubKey: 'subSubValue'
})
})
})
const newMap = originalMap.setIn(['subObject', 'subKey'], 'ha ha!') // Map { // "subObject": Map { // "subKey": "ha ha!", // "subSubObject": Map { "subSubKey": "subSubValue" } // } // }
const newerMap = originalMap.setIn( ['subObject', 'subSubObject', 'subSubKey'], 'ha ha ha!' ) // Map { // "subObject": Map { // "subKey": "subvalue", // "subSubObject": Map { "subSubKey": "ha ha ha!" } // } // }run it
Plain JavaScript Object or Arrays may be nested within an Immutable.js Collection, and setIn() can update those values as well, treating them immutably by creating new copies of those values with the changes applied.
const { Map } = require('immutable')
const originalMap = Map({
subObject: {
subKey: 'subvalue',
subSubObject: {
subSubKey: 'subSubValue'
}
}
})
originalMap.setIn(['subObject', 'subKey'], 'ha ha!') // Map { // "subObject": { // subKey: "ha ha!", // subSubObject: { subSubKey: "subSubValue" } // } // }run it
If any key in the path exists but cannot be updated (such as a primitive like number or a custom Object like Date), an error will be thrown.
Note: setIn
can be used in withMutations
.
Returns a new Map having removed the value at this keyPath
. If any keys
in keyPath
do not exist, no change will occur.
deleteIn(keyPath: Iterable<unknown>): this
Map#deleteIn()
removeIn()
Note: deleteIn
can be used in withMutations
.
updateIn(keyPath: Iterable<unknown>,
notSetValue: unknown,
updater: (value: unknown) => unknown): this
updateIn(keyPath: Iterable<unknown>, updater: (value: unknown) => unknown): this
Map#updateIn()
A combination of updateIn
and merge
, returning a new Map, but
performing the merge at a point arrived at by following the keyPath.
In other words, these two lines are equivalent:
mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this
Map#mergeIn()
map.updateIn(['a', 'b', 'c'], abc => abc.merge(y))
map.mergeIn(['a', 'b', 'c'], y)
Note: mergeIn
can be used in withMutations
.
A combination of updateIn
and mergeDeep
, returning a new Map, but
performing the deep merge at a point arrived at by following the keyPath.
In other words, these two lines are equivalent:
mergeDeepIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this
Map#mergeDeepIn()
map.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y))
map.mergeDeepIn(['a', 'b', 'c'], y)
Note: mergeDeepIn
can be used in withMutations
.
Every time you call one of the above functions, a new immutable Map is created. If a pure function calls a number of these to produce a final return value, then a penalty on performance and memory has been paid by creating all of the intermediate immutable Maps.
withMutations(mutator: (mutable: this) => unknown): this
Map#withMutations()
If you need to apply a series of mutations to produce a new immutable
Map, withMutations()
creates a temporary mutable copy of the Map which
can apply mutations in a highly performant manner. In fact, this is
exactly how complex mutations like merge
are done.
As an example, this results in the creation of 2, not 4, new Maps:
const { Map } = require('immutable')
const map1 = Map()
const map2 = map1.withMutations(map => {
map.set('a', 1).set('b', 2).set('c', 3)
})
assert.equal(map1.size, 0)
assert.equal(map2.size, 3)run it
Note: Not all methods can be used on a mutable collection or within
withMutations
! Read the documentation for each method to see if it
is safe to use in withMutations
.
Another way to avoid creation of intermediate Immutable maps is to create
a mutable copy of this collection. Mutable copies always return this
,
and thus shouldn't be used for equality. Your function should never return
a mutable copy of a collection, only use it internally to create a new
collection.
asMutable(): this
Map#asMutable()
If possible, use withMutations
to work with temporary mutable copies as
it provides an easier to use API and considers many common optimizations.
Note: if the collection is already mutable, asMutable
returns itself.
Note: Not all methods can be used on a mutable collection or within
withMutations
! Read the documentation for each method to see if it
is safe to use in withMutations
.
Returns true if this is a mutable copy (see asMutable()
) and mutative
alterations have been applied.
wasAltered(): boolean
Map#wasAltered()
The yin to asMutable
's yang. Because it applies to mutable collections,
this operation is mutable and may return itself (though may not
return itself, i.e. if the result is an empty collection). Once
performed, the original mutable copy must no longer be mutated since it
may be the immutable result.
asImmutable(): this
Map#asImmutable()
If possible, use withMutations
to work with temporary mutable copies as
it provides an easier to use API and considers many common optimizations.
Deeply converts this Keyed collection to equivalent native JavaScript Object.
toJS(): {[key: string]: DeepCopy<V>}
Collection.Keyed#toJS()
Converts keys to Strings.
Shallowly converts this Keyed collection to equivalent native JavaScript Object.
toJSON(): {[key: string]: V}
Collection.Keyed#toJSON()
Converts keys to Strings.
Shallowly converts this collection to an Array.
toArray(): Array<[K, V]>
Collection.Keyed#toArray()
Shallowly converts this Collection to an Object.
toObject(): {[key: string]: V}
Collection#toObject()
Converts keys to Strings.
Returns a Seq.Keyed from this Collection where indices are treated as keys.
toKeyedSeq(): Seq.Keyed<K, V>
Collection#toKeyedSeq()
This is useful if you want to operate on an Collection.Indexed and preserve the [index, value] pairs.
The returned Seq will have identical iteration order as this Collection.
const { Seq } = require('immutable')
const indexedSeq = Seq([ 'A', 'B', 'C' ])
// Seq [ "A", "B", "C" ]
indexedSeq.filter(v => v === 'B')
// Seq [ "B" ]
const keyedSeq = indexedSeq.toKeyedSeq()
// Seq { 0: "A", 1: "B", 2: "C" }
keyedSeq.filter(v => v === 'B')
// Seq { 1: "B" }run it
Returns an Seq.Indexed of the values of this Collection, discarding keys.
toIndexedSeq(): Seq.Indexed<V>
Collection#toIndexedSeq()
Returns a Seq.Set of the values of this Collection, discarding keys.
toSetSeq(): Seq.Set<V>
Collection#toSetSeq()
concat<KC, VC>(...collections: Array<Iterable<[KC, VC]>>): Collection.Keyed<K | KC, V | VC>
concat<C>(...collections: Array<{[key: string]: C}>): Collection.Keyed<K | string, V | C>
Collection.Keyed#concat()
[Symbol.iterator](): IterableIterator<[K, V]>
Collection.Keyed#[Symbol.iterator]()
True if this and the other Collection have value equality, as defined
by Immutable.is()
.
equals(other: unknown): boolean
Collection#equals()
Note: This is equivalent to Immutable.is(this, other)
, but provided to
allow for chained expressions.
Computes and returns the hashed identity for this Collection.
hashCode(): number
Collection#hashCode()
The hashCode
of a Collection is used to determine potential equality,
and is used when adding this to a Set
or as a key in a Map
, enabling
lookup via a different instance.
const a = List([ 1, 2, 3 ]);
const b = List([ 1, 2, 3 ]);
assert.notStrictEqual(a, b); // different instances
const set = Set([ a ]);
assert.equal(set.has(b), true);run it
If two values have the same hashCode
, they are not guaranteed
to be equal. If two values have different hashCode
s,
they must not be equal.
get<NSV>(key: K, notSetValue: NSV): V | NSV
get(key: K): V | undefined
Collection#get()
True if a key exists within this Collection
, using Immutable.is
to determine equality
has(key: K): boolean
Collection#has()
True if a value exists within this Collection
, using Immutable.is
to determine equality
includes(value: V): boolean
Collection#includes()
contains()
In case the Collection
is not empty returns the first element of the
Collection
.
In case the Collection
is empty returns the optional default
value if provided, if no default value is provided returns undefined.
first<NSV>(notSetValue?: NSV): V | NSV
Collection#first()
In case the Collection
is not empty returns the last element of the
Collection
.
In case the Collection
is empty returns the optional default
value if provided, if no default value is provided returns undefined.
last<NSV>(notSetValue?: NSV): V | NSV
Collection#last()
Returns the value found by following a path of keys or indices through nested Collections.
getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown
Collection#getIn()
const { Map, List } = require('immutable')
const deepData = Map({ x: List([ Map({ y: 123 }) ]) });
deepData.getIn(['x', 0, 'y']) // 123run it
Plain JavaScript Object or Arrays may be nested within an Immutable.js Collection, and getIn() can access those values as well:
const { Map, List } = require('immutable')
const deepData = Map({ x: [ { y: 123 } ] });
deepData.getIn(['x', 0, 'y']) // 123run it
True if the result of following a path of keys or indices through nested Collections results in a set value.
hasIn(searchKeyPath: Iterable<unknown>): boolean
Collection#hasIn()
Converts this Collection to a Map, Throws if keys are not hashable.
toMap(): Map<K, V>
Collection#toMap()
Note: This is equivalent to Map(this.toKeyedSeq())
, but provided
for convenience and to allow for chained expressions.
Converts this Collection to a Map, maintaining the order of iteration.
toOrderedMap(): OrderedMap<K, V>
Collection#toOrderedMap()
Note: This is equivalent to OrderedMap(this.toKeyedSeq())
, but
provided for convenience and to allow for chained expressions.
Converts this Collection to a Set, discarding keys. Throws if values are not hashable.
toSet(): Set<V>
Collection#toSet()
Note: This is equivalent to Set(this)
, but provided to allow for
chained expressions.
Converts this Collection to a Set, maintaining the order of iteration and discarding keys.
toOrderedSet(): OrderedSet<V>
Collection#toOrderedSet()
Note: This is equivalent to OrderedSet(this.valueSeq())
, but provided
for convenience and to allow for chained expressions.
Converts this Collection to a List, discarding keys.
toList(): List<V>
Collection#toList()
This is similar to List(collection)
, but provided to allow for chained
expressions. However, when called on Map
or other keyed collections,
collection.toList()
discards the keys and creates a list of only the
values, whereas List(collection)
creates a list of entry tuples.
const { Map, List } = require('immutable')
var myMap = Map({ a: 'Apple', b: 'Banana' })
List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ]
myMap.toList() // List [ "Apple", "Banana" ]run it
Converts this Collection to a Stack, discarding keys. Throws if values are not hashable.
toStack(): Stack<V>
Collection#toStack()
Note: This is equivalent to Stack(this)
, but provided to allow for
chained expressions.
An iterator of this Collection
's keys.
keys(): IterableIterator<K>
Collection#keys()
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use keySeq
instead, if this is
what you want.
An iterator of this Collection
's values.
values(): IterableIterator<V>
Collection#values()
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use valueSeq
instead, if this is
what you want.
An iterator of this Collection
's entries as [ key, value ]
tuples.
entries(): IterableIterator<[K, V]>
Collection#entries()
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use entrySeq
instead, if this is
what you want.
Returns a new Seq.Indexed of the keys of this Collection, discarding values.
keySeq(): Seq.Indexed<K>
Collection#keySeq()
Returns an Seq.Indexed of the values of this Collection, discarding keys.
valueSeq(): Seq.Indexed<V>
Collection#valueSeq()
Returns a new Seq.Indexed of [key, value] tuples.
entrySeq(): Seq.Indexed<[K, V]>
Collection#entrySeq()
The sideEffect
is executed for every entry in the Collection.
forEach(sideEffect: (value: V, key: K, iter: this) => unknown,
context?: unknown): number
Collection#forEach()
Unlike Array#forEach
, if any call of sideEffect
returns
false
, the iteration will stop. Returns the number of entries iterated
(including the last iteration which returned false).
Returns a new Collection of the same type representing a portion of this Collection from start up to but not including end.
slice(begin?: number, end?: number): this
Collection#slice()
If begin is negative, it is offset from the end of the Collection. e.g.
slice(-2)
returns a Collection of the last two entries. If it is not
provided the new Collection will begin at the beginning of this Collection.
If end is negative, it is offset from the end of the Collection. e.g.
slice(0, -1)
returns a Collection of everything but the last entry. If
it is not provided, the new Collection will continue through the end of
this Collection.
If the requested slice is equivalent to the current Collection, then it will return itself.
Returns a new Collection of the same type containing all entries except the first.
rest(): this
Collection#rest()
Returns a new Collection of the same type containing all entries except the last.
butLast(): this
Collection#butLast()
Returns a new Collection of the same type which excludes the first amount
entries from this Collection.
skip(amount: number): this
Collection#skip()
Returns a new Collection of the same type which excludes the last amount
entries from this Collection.
skipLast(amount: number): this
Collection#skipLast()
Returns a new Collection of the same type which includes entries starting
from when predicate
first returns false.
skipWhile(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
Collection#skipWhile()
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.skipWhile(x => x.match(/g/))
// List [ "cat", "hat", "god" ]run it
Returns a new Collection of the same type which includes entries starting
from when predicate
first returns true.
skipUntil(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
Collection#skipUntil()
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.skipUntil(x => x.match(/hat/))
// List [ "hat", "god" ]run it
Returns a new Collection of the same type which includes the first amount
entries from this Collection.
take(amount: number): this
Collection#take()
Returns a new Collection of the same type which includes the last amount
entries from this Collection.
takeLast(amount: number): this
Collection#takeLast()
Returns a new Collection of the same type which includes entries from this
Collection as long as the predicate
returns true.
takeWhile(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
Collection#takeWhile()
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.takeWhile(x => x.match(/o/))
// List [ "dog", "frog" ]run it
Returns a new Collection of the same type which includes entries from this
Collection as long as the predicate
returns false.
takeUntil(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
Collection#takeUntil()
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.takeUntil(x => x.match(/at/))
// List [ "dog", "frog" ]run it
flatten(depth?: number): Collection<unknown, unknown>
flatten(shallow?: boolean): Collection<unknown, unknown>
Collection#flatten()
reduce<R>(reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown): R
reduce<R>(reducer: (reduction: V | R, value: V, key: K, iter: this) => R): R
Collection#reduce()
reduceRight<R>(reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown): R
reduceRight<R>(reducer: (reduction: V | R, value: V, key: K, iter: this) => R): R
Collection#reduceRight()
True if predicate
returns true for all entries in the Collection.
every(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): boolean
Collection#every()
True if predicate
returns true for any entry in the Collection.
some(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): boolean
Collection#some()
Joins values together as a string, inserting a separator between each.
The default separator is ","
.
join(separator?: string): string
Collection#join()
Returns true if this Collection includes no values.
isEmpty(): boolean
Collection#isEmpty()
count(): number
count(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): number
Collection#count()
Returns a Seq.Keyed
of counts, grouped by the return value of
the grouper
function.
countBy<G>(grouper: (value: V, key: K, iter: this) => G,
context?: unknown): Map<G, number>
Collection#countBy()
Note: This is not a lazy operation.
Returns the first value for which the predicate
returns true.
find(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): V | undefined
Collection#find()
Returns the last value for which the predicate
returns true.
findLast(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): V | undefined
Collection#findLast()
Note: predicate
will be called for each entry in reverse.
Returns the first [key, value] entry for which the predicate
returns true.
findEntry(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): [K, V] | undefined
Collection#findEntry()
Returns the last [key, value] entry for which the predicate
returns true.
findLastEntry(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): [K, V] | undefined
Collection#findLastEntry()
Note: predicate
will be called for each entry in reverse.
Returns the key for which the predicate
returns true.
findKey(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): K | undefined
Collection#findKey()
Returns the last key for which the predicate
returns true.
findLastKey(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): K | undefined
Collection#findLastKey()
Note: predicate
will be called for each entry in reverse.
Returns the key associated with the search value, or undefined.
keyOf(searchValue: V): K | undefined
Collection#keyOf()
Returns the last key associated with the search value, or undefined.
lastKeyOf(searchValue: V): K | undefined
Collection#lastKeyOf()
Returns the maximum value in this collection. If any values are comparatively equivalent, the first one found will be returned.
max(comparator?: Comparator<V>): V | undefined
Collection#max()
The comparator
is used in the same way as Collection#sort
. If it is not
provided, the default comparator is >
.
When two values are considered equivalent, the first encountered will be
returned. Otherwise, max
will operate independent of the order of input
as long as the comparator is commutative. The default comparator >
is
commutative only when types do not differ.
If comparator
returns 0 and either value is NaN, undefined, or null,
that value will be returned.
Like max
, but also accepts a comparatorValueMapper
which allows for
comparing by more sophisticated means:
maxBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): V | undefined
Collection#maxBy()
const { List, } = require('immutable');
const l = List([
{ name: 'Bob', avgHit: 1 },
{ name: 'Max', avgHit: 3 },
{ name: 'Lili', avgHit: 2 } ,
]);
l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 }run it
Returns the minimum value in this collection. If any values are comparatively equivalent, the first one found will be returned.
min(comparator?: Comparator<V>): V | undefined
Collection#min()
The comparator
is used in the same way as Collection#sort
. If it is not
provided, the default comparator is <
.
When two values are considered equivalent, the first encountered will be
returned. Otherwise, min
will operate independent of the order of input
as long as the comparator is commutative. The default comparator <
is
commutative only when types do not differ.
If comparator
returns 0 and either value is NaN, undefined, or null,
that value will be returned.
Like min
, but also accepts a comparatorValueMapper
which allows for
comparing by more sophisticated means:
minBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): V | undefined
Collection#minBy()
const { List, } = require('immutable');
const l = List([
{ name: 'Bob', avgHit: 1 },
{ name: 'Max', avgHit: 3 },
{ name: 'Lili', avgHit: 2 } ,
]);
l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 }run it
True if iter
includes every value in this Collection.
isSubset(iter: Iterable<V>): boolean
Collection#isSubset()
True if this Collection includes every value in iter
.
isSuperset(iter: Iterable<V>): boolean
Collection#isSuperset()