The Collection
is a set of (key, value) entries which can be iterated, and
is the base class for all collections in immutable
, allowing them to
make use of all the Collection methods (such as map
and filter
).
type Collection<K, V> extends ValueObject
Note: A collection is always iterated in the same order, however that order
may not always be well defined, as is the case for the Map
and Set
.
Collection is the abstract base class for concrete data structures. It cannot be constructed directly.
Implementations should extend one of the subclasses, Collection.Keyed
,
Collection.Indexed
, or Collection.Set
.
Collection<I>(collection: I): I
Collection<T>(collection: Iterable<T> | ArrayLike<T>): Collection.Indexed<T>
Collection<V>(obj: {[key: string]: V}): Collection.Keyed<string, V>
Collection<K, V>(): Collection<K, V>
True if this and the other Collection have value equality, as defined
by Immutable.is()
.
equals(other: unknown): boolean
ValueObject#equals()
Note: This is equivalent to Immutable.is(this, other)
, but provided to
allow for chained expressions.
Computes and returns the hashed identity for this Collection.
hashCode(): number
ValueObject#hashCode()
The hashCode
of a Collection is used to determine potential equality,
and is used when adding this to a Set
or as a key in a Map
, enabling
lookup via a different instance.
const a = List([ 1, 2, 3 ]);
const b = List([ 1, 2, 3 ]);
assert.notStrictEqual(a, b); // different instances
const set = Set([ a ]);
assert.equal(set.has(b), true);run it
If two values have the same hashCode
, they are not guaranteed
to be equal. If two values have different hashCode
s,
they must not be equal.
get<NSV>(key: K, notSetValue: NSV): V | NSV
get(key: K): V | undefined
True if a key exists within this Collection
, using Immutable.is
to determine equality
has(key: K): boolean
True if a value exists within this Collection
, using Immutable.is
to determine equality
includes(value: V): boolean
contains()
In case the Collection
is not empty returns the first element of the
Collection
.
In case the Collection
is empty returns the optional default
value if provided, if no default value is provided returns undefined.
first<NSV>(notSetValue?: NSV): V | NSV
In case the Collection
is not empty returns the last element of the
Collection
.
In case the Collection
is empty returns the optional default
value if provided, if no default value is provided returns undefined.
last<NSV>(notSetValue?: NSV): V | NSV
Returns the value found by following a path of keys or indices through nested Collections.
getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown
const { Map, List } = require('immutable')
const deepData = Map({ x: List([ Map({ y: 123 }) ]) });
deepData.getIn(['x', 0, 'y']) // 123run it
Plain JavaScript Object or Arrays may be nested within an Immutable.js Collection, and getIn() can access those values as well:
const { Map, List } = require('immutable')
const deepData = Map({ x: [ { y: 123 } ] });
deepData.getIn(['x', 0, 'y']) // 123run it
True if the result of following a path of keys or indices through nested Collections results in a set value.
hasIn(searchKeyPath: Iterable<unknown>): boolean
This can be very useful as a way to "chain" a normal function into a sequence of methods. RxJS calls this "let" and lodash calls it "thru".
update<R>(updater: (value: this) => R): R
For example, to sum a Seq after mapping and filtering:
const { Seq } = require('immutable')
function sum(collection) {
return collection.reduce((sum, x) => sum + x, 0)
}
Seq([ 1, 2, 3 ])
.map(x => x + 1)
.filter(x => x % 2 === 0)
.update(sum)
// 6run it
Deeply converts this Collection to equivalent native JavaScript Array or Object.
toJS(): Array<DeepCopy<V>> | {[key: string]: DeepCopy<V>}
Collection.Indexed
, and Collection.Set
become Array
, while
Collection.Keyed
become Object
, converting keys to Strings.
Shallowly converts this Collection to equivalent native JavaScript Array or Object.
toJSON(): Array<V> | {[key: string]: V}
Collection.Indexed
, and Collection.Set
become Array
, while
Collection.Keyed
become Object
, converting keys to Strings.
Shallowly converts this collection to an Array.
toArray(): Array<V> | Array<[K, V]>
Collection.Indexed
, and Collection.Set
produce an Array of values.
Collection.Keyed
produce an Array of [key, value] tuples.
Shallowly converts this Collection to an Object.
toObject(): {[key: string]: V}
Converts keys to Strings.
Converts this Collection to a Map, Throws if keys are not hashable.
toMap(): Map<K, V>
Note: This is equivalent to Map(this.toKeyedSeq())
, but provided
for convenience and to allow for chained expressions.
Converts this Collection to a Map, maintaining the order of iteration.
toOrderedMap(): OrderedMap<K, V>
Note: This is equivalent to OrderedMap(this.toKeyedSeq())
, but
provided for convenience and to allow for chained expressions.
Converts this Collection to a Set, maintaining the order of iteration and discarding keys.
toOrderedSet(): OrderedSet<V>
Note: This is equivalent to OrderedSet(this.valueSeq())
, but provided
for convenience and to allow for chained expressions.
Converts this Collection to a List, discarding keys.
toList(): List<V>
This is similar to List(collection)
, but provided to allow for chained
expressions. However, when called on Map
or other keyed collections,
collection.toList()
discards the keys and creates a list of only the
values, whereas List(collection)
creates a list of entry tuples.
const { Map, List } = require('immutable')
var myMap = Map({ a: 'Apple', b: 'Banana' })
List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ]
myMap.toList() // List [ "Apple", "Banana" ]run it
Converts this Collection to a Stack, discarding keys. Throws if values are not hashable.
toStack(): Stack<V>
Note: This is equivalent to Stack(this)
, but provided to allow for
chained expressions.
Converts this Collection to a Seq of the same kind (indexed, keyed, or set).
toSeq(): Seq<K, V>
Returns a Seq.Keyed from this Collection where indices are treated as keys.
toKeyedSeq(): Seq.Keyed<K, V>
This is useful if you want to operate on an Collection.Indexed and preserve the [index, value] pairs.
The returned Seq will have identical iteration order as this Collection.
const { Seq } = require('immutable')
const indexedSeq = Seq([ 'A', 'B', 'C' ])
// Seq [ "A", "B", "C" ]
indexedSeq.filter(v => v === 'B')
// Seq [ "B" ]
const keyedSeq = indexedSeq.toKeyedSeq()
// Seq { 0: "A", 1: "B", 2: "C" }
keyedSeq.filter(v => v === 'B')
// Seq { 1: "B" }run it
Returns an Seq.Indexed of the values of this Collection, discarding keys.
toIndexedSeq(): Seq.Indexed<V>
Returns a Seq.Set of the values of this Collection, discarding keys.
toSetSeq(): Seq.Set<V>
An iterator of this Collection
's keys.
keys(): IterableIterator<K>
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use keySeq
instead, if this is
what you want.
An iterator of this Collection
's values.
values(): IterableIterator<V>
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use valueSeq
instead, if this is
what you want.
An iterator of this Collection
's entries as [ key, value ]
tuples.
entries(): IterableIterator<[K, V]>
Note: this will return an ES6 iterator which does not support
Immutable.js sequence algorithms. Use entrySeq
instead, if this is
what you want.
[Symbol.iterator](): IterableIterator<unknown>
Returns a new Seq.Indexed of the keys of this Collection, discarding values.
keySeq(): Seq.Indexed<K>
Returns an Seq.Indexed of the values of this Collection, discarding keys.
valueSeq(): Seq.Indexed<V>
Returns a new Seq.Indexed of [key, value] tuples.
entrySeq(): Seq.Indexed<[K, V]>
Returns a new Collection of the same type with values passed through a
mapper
function.
map<M>(mapper: (value: V, key: K, iter: this) => M,
context?: unknown): Collection<K, M>
filter<F>(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): Collection<K, F>
filter(predicate: (value: V, key: K, iter: this) => unknown,
context?: unknown): this
Returns a new Collection of the same type with only the entries for which
the predicate
function returns false.
filterNot(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
const { Map } = require('immutable')
Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0)
// Map { "a": 1, "c": 3 }run it
Note: filterNot()
always returns a new instance, even if it results in
not filtering out any values.
partition<F, C>(predicate: (this: C, value: V, key: K, iter: this) => boolean,
context?: C): [Collection<K, V>, Collection<K, F>]
partition<C>(predicate: (this: C, value: V, key: K, iter: this) => unknown,
context?: C): [this, this]
Returns a new Collection of the same type in reverse order.
reverse(): this
Returns a new Collection of the same type which includes the same entries,
stably sorted by using a comparator
.
sort(comparator?: Comparator<V>): this
If a comparator
is not provided, a default comparator uses <
and >
.
comparator(valueA, valueB)
:
0
if the elements should not be swapped.-1
(or any negative number) if valueA
comes before valueB
1
(or any positive number) if valueA
comes after valueB
PairSorting
enum typeWhen sorting collections which have no defined order, their ordered
equivalents will be returned. e.g. map.sort()
returns OrderedMap.
const { Map } = require('immutable')
Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => {
if (a < b) { return -1; }
if (a > b) { return 1; }
if (a === b) { return 0; }
});
// OrderedMap { "a": 1, "b": 2, "c": 3 }run it
Note: sort()
Always returns a new instance, even if the original was
already sorted.
Note: This is always an eager operation.
Like sort
, but also accepts a comparatorValueMapper
which allows for
sorting by more sophisticated means:
sortBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): this
const { Map } = require('immutable')
const beattles = Map({
John: { name: "Lennon" },
Paul: { name: "McCartney" },
George: { name: "Harrison" },
Ringo: { name: "Starr" },
});
beattles.sortBy(member => member.name);run it
Note: sortBy()
Always returns a new instance, even if the original was
already sorted.
Note: This is always an eager operation.
Returns a Map
of Collection
, grouped by the return
value of the grouper
function.
groupBy<G>(grouper: (value: V, key: K, iter: this) => G,
context?: unknown): Map<G, this>
Note: This is always an eager operation.
const { List, Map } = require('immutable')
const listOfMaps = List([
Map({ v: 0 }),
Map({ v: 1 }),
Map({ v: 1 }),
Map({ v: 0 }),
Map({ v: 2 })
])
const groupsOfMaps = listOfMaps.groupBy(x => x.get('v'))
// Map {
// 0: List [ Map{ "v": 0 }, Map { "v": 0 } ],
// 1: List [ Map{ "v": 1 }, Map { "v": 1 } ],
// 2: List [ Map{ "v": 2 } ],
// }run it
The sideEffect
is executed for every entry in the Collection.
forEach(sideEffect: (value: V, key: K, iter: this) => unknown,
context?: unknown): number
Unlike Array#forEach
, if any call of sideEffect
returns
false
, the iteration will stop. Returns the number of entries iterated
(including the last iteration which returned false).
Returns a new Collection of the same type representing a portion of this Collection from start up to but not including end.
slice(begin?: number, end?: number): this
If begin is negative, it is offset from the end of the Collection. e.g.
slice(-2)
returns a Collection of the last two entries. If it is not
provided the new Collection will begin at the beginning of this Collection.
If end is negative, it is offset from the end of the Collection. e.g.
slice(0, -1)
returns a Collection of everything but the last entry. If
it is not provided, the new Collection will continue through the end of
this Collection.
If the requested slice is equivalent to the current Collection, then it will return itself.
Returns a new Collection of the same type containing all entries except the first.
rest(): this
Returns a new Collection of the same type containing all entries except the last.
butLast(): this
Returns a new Collection of the same type which excludes the first amount
entries from this Collection.
skip(amount: number): this
Returns a new Collection of the same type which excludes the last amount
entries from this Collection.
skipLast(amount: number): this
Returns a new Collection of the same type which includes entries starting
from when predicate
first returns false.
skipWhile(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.skipWhile(x => x.match(/g/))
// List [ "cat", "hat", "god" ]run it
Returns a new Collection of the same type which includes entries starting
from when predicate
first returns true.
skipUntil(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.skipUntil(x => x.match(/hat/))
// List [ "hat", "god" ]run it
Returns a new Collection of the same type which includes the first amount
entries from this Collection.
take(amount: number): this
Returns a new Collection of the same type which includes the last amount
entries from this Collection.
takeLast(amount: number): this
Returns a new Collection of the same type which includes entries from this
Collection as long as the predicate
returns true.
takeWhile(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.takeWhile(x => x.match(/o/))
// List [ "dog", "frog" ]run it
Returns a new Collection of the same type which includes entries from this
Collection as long as the predicate
returns false.
takeUntil(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): this
const { List } = require('immutable')
List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
.takeUntil(x => x.match(/at/))
// List [ "dog", "frog" ]run it
Returns a new Collection of the same type with other values and collection-like concatenated to this one.
concat(...valuesOrCollections: Array<unknown>): Collection<unknown, unknown>
For Seqs, all entries will be present in the resulting Seq, even if they have the same key.
flatten(depth?: number): Collection<unknown, unknown>
flatten(shallow?: boolean): Collection<unknown, unknown>
Flat-maps the Collection, returning a Collection of the same type.
flatMap<M>(mapper: (value: V, key: K, iter: this) => Iterable<M>,
context?: unknown): Collection<K, M>
flatMap<KM, VM>(mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
context?: unknown): Collection<KM, VM>
Similar to collection.map(...).flatten(true)
.
Used for Dictionaries only.
reduce<R>(reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown): R
reduce<R>(reducer: (reduction: V | R, value: V, key: K, iter: this) => R): R
reduceRight<R>(reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown): R
reduceRight<R>(reducer: (reduction: V | R, value: V, key: K, iter: this) => R): R
True if predicate
returns true for all entries in the Collection.
every(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): boolean
True if predicate
returns true for any entry in the Collection.
some(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): boolean
Joins values together as a string, inserting a separator between each.
The default separator is ","
.
join(separator?: string): string
count(): number
count(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): number
Returns the first value for which the predicate
returns true.
find(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): V | undefined
Returns the last value for which the predicate
returns true.
findLast(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): V | undefined
Note: predicate
will be called for each entry in reverse.
Returns the first [key, value] entry for which the predicate
returns true.
findEntry(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): [K, V] | undefined
Returns the last [key, value] entry for which the predicate
returns true.
findLastEntry(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V): [K, V] | undefined
Note: predicate
will be called for each entry in reverse.
Returns the key for which the predicate
returns true.
findKey(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): K | undefined
Returns the last key for which the predicate
returns true.
findLastKey(predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown): K | undefined
Note: predicate
will be called for each entry in reverse.
Returns the key associated with the search value, or undefined.
keyOf(searchValue: V): K | undefined
Returns the last key associated with the search value, or undefined.
lastKeyOf(searchValue: V): K | undefined
Returns the maximum value in this collection. If any values are comparatively equivalent, the first one found will be returned.
max(comparator?: Comparator<V>): V | undefined
The comparator
is used in the same way as Collection#sort
. If it is not
provided, the default comparator is >
.
When two values are considered equivalent, the first encountered will be
returned. Otherwise, max
will operate independent of the order of input
as long as the comparator is commutative. The default comparator >
is
commutative only when types do not differ.
If comparator
returns 0 and either value is NaN, undefined, or null,
that value will be returned.
Like max
, but also accepts a comparatorValueMapper
which allows for
comparing by more sophisticated means:
maxBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): V | undefined
const { List, } = require('immutable');
const l = List([
{ name: 'Bob', avgHit: 1 },
{ name: 'Max', avgHit: 3 },
{ name: 'Lili', avgHit: 2 } ,
]);
l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 }run it
Returns the minimum value in this collection. If any values are comparatively equivalent, the first one found will be returned.
min(comparator?: Comparator<V>): V | undefined
The comparator
is used in the same way as Collection#sort
. If it is not
provided, the default comparator is <
.
When two values are considered equivalent, the first encountered will be
returned. Otherwise, min
will operate independent of the order of input
as long as the comparator is commutative. The default comparator <
is
commutative only when types do not differ.
If comparator
returns 0 and either value is NaN, undefined, or null,
that value will be returned.
Like min
, but also accepts a comparatorValueMapper
which allows for
comparing by more sophisticated means:
minBy<C>(comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>): V | undefined
const { List, } = require('immutable');
const l = List([
{ name: 'Bob', avgHit: 1 },
{ name: 'Max', avgHit: 3 },
{ name: 'Lili', avgHit: 2 } ,
]);
l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 }run it
True if iter
includes every value in this Collection.
isSubset(iter: Iterable<V>): boolean
True if this Collection includes every value in iter
.
isSuperset(iter: Iterable<V>): boolean