Grouped • Alphabetized

Inherited • Defined

`Seq`

which represents a set of values.

`type Seq.Set<T> extends Seq<T, T>, Iterable.Set<T>`

```
Seq.Set<T>(): Seq.Set<T>
Seq.Set<T>(seq: Iterable.Set<T>): Seq.Set<T>
Seq.Set<T>(seq: Iterable.Indexed<T>): Seq.Set<T>
Seq.Set<K, V>(seq: Iterable.Keyed<K, V>): Seq.Set<any>
Seq.Set<T>(array: Array<T>): Seq.Set<T>
Seq.Set<T>(iterator: Iterator<T>): Seq.Set<T>
Seq.Set<T>(iterable: Object): Seq.Set<T>
```

```
Seq.Set.of<T>(...values: T[]): Seq.Set<T>
```

Returns a Seq.Keyed from this Iterable where indices are treated as keys.

```
toKeyedSeq(): Seq.Keyed<T, T>
```

`Iterable#toKeyedSeq()`

This is useful if you want to operate on an Iterable.Indexed and preserve the [index, value] pairs.

The returned Seq will have identical iteration order as this Iterable.

Example:

```
var indexedSeq = Immutable.Seq.of('A', 'B', 'C');
indexedSeq.filter(v => v === 'B').toString() // Seq [ 'B' ]
var keyedSeq = indexedSeq.toKeyedSeq();
keyedSeq.filter(v => v === 'B').toString() // Seq { 1: 'B' }
```

Returns an Seq.Indexed of the values of this Iterable, discarding keys.

```
toIndexedSeq(): Seq.Indexed<T>
```

`Iterable#toIndexedSeq()`

Returns a Seq.Set of the values of this Iterable, discarding keys.

```
toSetSeq(): Seq.Set<T>
```

`Iterable#toSetSeq()`

Some Seqs can describe their size lazily. When this is the case, size will be an integer. Otherwise it will be undefined.

`size: number`

`Seq#size`

Because Sequences are lazy and designed to be chained together, they do
not cache their results. For example, this map function is called a total
of 6 times, as each `join`

iterates the Seq of three values.

```
cacheResult(): Seq<T, T>
```

`Seq#cacheResult()`

`var squares = Seq.of(1,2,3).map(x => x `

* x);
squares.join() + squares.join();*

*If you know a Seq will be used multiple times, it may be more
efficient to first cache it in memory. Here, the map function is called
only 3 times.*

`var squares = Seq.of(1,2,3).map(x => x `

```
x).cacheResult();
squares.join() + squares.join();
```

Use this method judiciously, as it must fully evaluate a Seq which can be a burden on memory and possibly performance.

Note: after calling `cacheResult`

, a Seq will always have a `size`

.

True if this and the other Iterable have value equality, as defined
by `Immutable.is()`

.

```
equals(other: Iterable<T, T>): boolean
```

`Iterable#equals()`

Note: This is equivalent to `Immutable.is(this, other)`

, but provided to
allow for chained expressions.

Computes and returns the hashed identity for this Iterable.

```
hashCode(): number
```

`Iterable#hashCode()`

The `hashCode`

of an Iterable is used to determine potential equality,
and is used when adding this to a `Set`

or as a key in a `Map`

, enabling
lookup via a different instance.

```
var a = List.of(1, 2, 3);
var b = List.of(1, 2, 3);
assert(a !== b); // different instances
var set = Set.of(a);
assert(set.has(b) === true);
```

If two values have the same `hashCode`

, they are not guaranteed
to be equal. If two values have different `hashCode`

s,
they must not be equal.

Returns the value associated with the provided key, or notSetValue if the Iterable does not contain this key.

```
get(key: T, notSetValue?: T): T
```

`Iterable#get()`

Note: it is possible a key may be associated with an `undefined`

value,
so if `notSetValue`

is not provided and this method returns `undefined`

,
that does not guarantee the key was not found.

True if a key exists within this `Iterable`

, using `Immutable.is`

to determine equality

```
has(key: T): boolean
```

`Iterable#has()`

True if a value exists within this `Iterable`

, using `Immutable.is`

to determine equality

```
includes(value: T): boolean
```

`Iterable#includes()`

`contains()`

```
getIn(searchKeyPath: Array<any>, notSetValue?: any): any
getIn(searchKeyPath: Iterable<any, any>, notSetValue?: any): any
```

`Iterable#getIn()`

```
hasIn(searchKeyPath: Array<any>): boolean
hasIn(searchKeyPath: Iterable<any, any>): boolean
```

`Iterable#hasIn()`

Deeply converts this Iterable to equivalent JS.

```
toJS(): any
```

`Iterable#toJS()`

`toJSON()`

`Iterable.Indexeds`

, and `Iterable.Sets`

become Arrays, while
`Iterable.Keyeds`

become Objects.

Shallowly converts this iterable to an Array, discarding keys.

```
toArray(): Array<T>
```

`Iterable#toArray()`

Shallowly converts this Iterable to an Object.

```
toObject(): {[key: string]: T}
```

`Iterable#toObject()`

Throws if keys are not strings.

Converts this Iterable to a Map, Throws if keys are not hashable.

```
toMap(): Map<T, T>
```

`Iterable#toMap()`

Note: This is equivalent to `Map(this.toKeyedSeq())`

, but provided
for convenience and to allow for chained expressions.

Converts this Iterable to a Map, maintaining the order of iteration.

```
toOrderedMap(): OrderedMap<T, T>
```

`Iterable#toOrderedMap()`

Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`

, but
provided for convenience and to allow for chained expressions.

Converts this Iterable to a Set, discarding keys. Throws if values are not hashable.

```
toSet(): Set<T>
```

`Iterable#toSet()`

Note: This is equivalent to `Set(this)`

, but provided to allow for
chained expressions.

Converts this Iterable to a Set, maintaining the order of iteration and discarding keys.

```
toOrderedSet(): OrderedSet<T>
```

`Iterable#toOrderedSet()`

Note: This is equivalent to `OrderedSet(this.valueSeq())`

, but provided
for convenience and to allow for chained expressions.

Converts this Iterable to a List, discarding keys.

```
toList(): List<T>
```

`Iterable#toList()`

Note: This is equivalent to `List(this)`

, but provided to allow
for chained expressions.

Converts this Iterable to a Stack, discarding keys. Throws if values are not hashable.

```
toStack(): Stack<T>
```

`Iterable#toStack()`

Note: This is equivalent to `Stack(this)`

, but provided to allow for
chained expressions.

An iterator of this `Iterable`

's keys.

```
keys(): Iterator<T>
```

`Iterable#keys()`

Note: this will return an ES6 iterator which does not support Immutable JS sequence algorithms. Use `keySeq`

instead, if this is what you want.

An iterator of this `Iterable`

's values.

```
values(): Iterator<T>
```

`Iterable#values()`

Note: this will return an ES6 iterator which does not support Immutable JS sequence algorithms. Use `valueSeq`

instead, if this is what you want.

An iterator of this `Iterable`

's entries as `[key, value]`

tuples.

```
entries(): Iterator<Array<any>>
```

`Iterable#entries()`

Note: this will return an ES6 iterator which does not support Immutable JS sequence algorithms. Use `entrySeq`

instead, if this is what you want.

Returns a new Seq.Indexed of the keys of this Iterable, discarding values.

```
keySeq(): Seq.Indexed<T>
```

`Iterable#keySeq()`

Returns an Seq.Indexed of the values of this Iterable, discarding keys.

```
valueSeq(): Seq.Indexed<T>
```

`Iterable#valueSeq()`

Returns a new Seq.Indexed of [key, value] tuples.

```
entrySeq(): Seq.Indexed<Array<any>>
```

`Iterable#entrySeq()`

Returns a new Iterable of the same type with values passed through a
`mapper`

function.

`map<M>(mapper: (value?: T, key?: T, iter?: Iterable<T, T>) => M,`

context?: any): Iterable<T, M>

`Iterable#map()`

```
Seq({ a: 1, b: 2 }).map(x => 10 * x)
// Seq { a: 10, b: 20 }
```

Returns a new Iterable of the same type with only the entries for which
the `predicate`

function returns true.

`filter(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#filter()`

```
Seq({a:1,b:2,c:3,d:4}).filter(x => x % 2 === 0)
// Seq { b: 2, d: 4 }
```

Returns a new Iterable of the same type with only the entries for which
the `predicate`

function returns false.

`filterNot(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#filterNot()`

```
Seq({a:1,b:2,c:3,d:4}).filterNot(x => x % 2 === 0)
// Seq { a: 1, c: 3 }
```

Returns a new Iterable of the same type in reverse order.

```
reverse(): Iterable<T, T>
```

`Iterable#reverse()`

Returns a new Iterable of the same type which includes the same entries,
stably sorted by using a `comparator`

.

```
sort(comparator?: (valueA: T, valueB: T) => number): Iterable<T, T>
```

`Iterable#sort()`

If a `comparator`

is not provided, a default comparator uses `<`

and `>`

.

`comparator(valueA, valueB)`

:

- Returns
`0`

if the elements should not be swapped. - Returns
`-1`

(or any negative number) if`valueA`

comes before`valueB`

- Returns
`1`

(or any positive number) if`valueA`

comes after`valueB`

- Is pure, i.e. it must always return the same value for the same pair of values.

When sorting collections which have no defined order, their ordered
equivalents will be returned. e.g. `map.sort()`

returns OrderedMap.

Like `sort`

, but also accepts a `comparatorValueMapper`

which allows for
sorting by more sophisticated means:

`sortBy<C>(comparatorValueMapper: (value?: T, key?: T, iter?: Iterable<T, T>) => C,`

comparator?: (valueA: C, valueB: C) => number): Iterable<T, T>

`Iterable#sortBy()`

`hitters.sortBy(hitter => hitter.avgHits);`

Returns a `Iterable.Keyed`

of `Iterable.Keyeds`

, grouped by the return
value of the `grouper`

function.

`groupBy<G>(grouper: (value?: T, key?: T, iter?: Iterable<T, T>) => G,`

context?: any): Seq.Keyed<G, Iterable<T, T>>

`Iterable#groupBy()`

Note: This is always an eager operation.

The `sideEffect`

is executed for every entry in the Iterable.

`forEach(sideEffect: (value?: T, key?: T, iter?: Iterable<T, T>) => any,`

context?: any): number

`Iterable#forEach()`

Unlike `Array#forEach`

, if any call of `sideEffect`

returns
`false`

, the iteration will stop. Returns the number of entries iterated
(including the last iteration which returned false).

Returns a new Iterable of the same type representing a portion of this Iterable from start up to but not including end.

```
slice(begin?: number, end?: number): Iterable<T, T>
```

`Iterable#slice()`

If begin is negative, it is offset from the end of the Iterable. e.g.
`slice(-2)`

returns a Iterable of the last two entries. If it is not
provided the new Iterable will begin at the beginning of this Iterable.

If end is negative, it is offset from the end of the Iterable. e.g.
`slice(0, -1)`

returns an Iterable of everything but the last entry. If
it is not provided, the new Iterable will continue through the end of
this Iterable.

If the requested slice is equivalent to the current Iterable, then it will return itself.

Returns a new Iterable of the same type containing all entries except the first.

```
rest(): Iterable<T, T>
```

`Iterable#rest()`

Returns a new Iterable of the same type containing all entries except the last.

```
butLast(): Iterable<T, T>
```

`Iterable#butLast()`

Returns a new Iterable of the same type which excludes the first `amount`

entries from this Iterable.

```
skip(amount: number): Iterable<T, T>
```

`Iterable#skip()`

Returns a new Iterable of the same type which excludes the last `amount`

entries from this Iterable.

```
skipLast(amount: number): Iterable<T, T>
```

`Iterable#skipLast()`

Returns a new Iterable of the same type which includes entries starting
from when `predicate`

first returns false.

`skipWhile(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#skipWhile()`

```
Seq.of('dog','frog','cat','hat','god')
.skipWhile(x => x.match(/g/))
// Seq [ 'cat', 'hat', 'god' ]
```

Returns a new Iterable of the same type which includes entries starting
from when `predicate`

first returns true.

`skipUntil(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#skipUntil()`

```
Seq.of('dog','frog','cat','hat','god')
.skipUntil(x => x.match(/hat/))
// Seq [ 'hat', 'god' ]
```

Returns a new Iterable of the same type which includes the first `amount`

entries from this Iterable.

```
take(amount: number): Iterable<T, T>
```

`Iterable#take()`

Returns a new Iterable of the same type which includes the last `amount`

entries from this Iterable.

```
takeLast(amount: number): Iterable<T, T>
```

`Iterable#takeLast()`

Returns a new Iterable of the same type which includes entries from this
Iterable as long as the `predicate`

returns true.

`takeWhile(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#takeWhile()`

```
Seq.of('dog','frog','cat','hat','god')
.takeWhile(x => x.match(/o/))
// Seq [ 'dog', 'frog' ]
```

Returns a new Iterable of the same type which includes entries from this
Iterable as long as the `predicate`

returns false.

`takeUntil(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): Iterable<T, T>

`Iterable#takeUntil()`

```
Seq.of('dog','frog','cat','hat','god').takeUntil(x => x.match(/at/))
// ['dog', 'frog']
```

Returns a new Iterable of the same type with other values and iterable-like concatenated to this one.

```
concat(...valuesOrIterables: any[]): Iterable<T, T>
```

`Iterable#concat()`

For Seqs, all entries will be present in the resulting iterable, even if they have the same key.

```
flatten(depth?: number): Iterable<any, any>
flatten(shallow?: boolean): Iterable<any, any>
```

`Iterable#flatten()`

`flatMap<MK, MV>(mapper: (value?: T, key?: T, iter?: Iterable<T, T>) => Iterable<MK, MV>,`

context?: any): Iterable<MK, MV>
flatMap<MK, MV>(mapper: (value?: T, key?: T, iter?: Iterable<T, T>) => any,

context?: any): Iterable<MK, MV>

`Iterable#flatMap()`

Reduces the Iterable to a value by calling the `reducer`

for every entry
in the Iterable and passing along the reduced value.

`reduce<R>(reducer: (reduction?: R, value?: T, key?: T, iter?: Iterable<T, T>) => R,`

initialReduction?: R,

context?: any): R

`Iterable#reduce()`

If `initialReduction`

is not provided, or is null, the first item in the
Iterable will be used.

Reduces the Iterable in reverse (from the right side).

`reduceRight<R>(reducer: (reduction?: R, value?: T, key?: T, iter?: Iterable<T, T>) => R,`

initialReduction?: R,

context?: any): R

`Iterable#reduceRight()`

Note: Similar to this.reverse().reduce(), and provided for parity
with `Array#reduceRight`

.

True if `predicate`

returns true for all entries in the Iterable.

`every(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): boolean

`Iterable#every()`

True if `predicate`

returns true for any entry in the Iterable.

`some(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any): boolean

`Iterable#some()`

Joins values together as a string, inserting a separator between each.
The default separator is `","`

.

```
join(separator?: string): string
```

`Iterable#join()`

Returns true if this Iterable includes no values.

```
isEmpty(): boolean
```

`Iterable#isEmpty()`

```
count(): number
count(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,
```

context?: any): number

`Iterable#count()`

Returns a `Seq.Keyed`

of counts, grouped by the return value of
the `grouper`

function.

`countBy<G>(grouper: (value?: T, key?: T, iter?: Iterable<T, T>) => G,`

context?: any): Map<G, number>

`Iterable#countBy()`

Note: This is not a lazy operation.

Returns the first value for which the `predicate`

returns true.

`find(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any,

notSetValue?: T): T

`Iterable#find()`

Returns the last value for which the `predicate`

returns true.

`findLast(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any,

notSetValue?: T): T

`Iterable#findLast()`

Note: `predicate`

will be called for each entry in reverse.

Returns the first [key, value] entry for which the `predicate`

returns true.

`findEntry(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any,

notSetValue?: T): Array<any>

`Iterable#findEntry()`

Returns the last [key, value] entry for which the `predicate`

returns true.

`findLastEntry(predicate: (value?: T, key?: T, iter?: Iterable<T, T>) => boolean,`

context?: any,

notSetValue?: T): Array<any>

`Iterable#findLastEntry()`

Note: `predicate`

will be called for each entry in reverse.

Returns the key for which the `predicate`

returns true.

`findKey(predicate: (value?: T, key?: T, iter?: Iterable.Keyed<T, T>) => boolean,`

context?: any): T

`Iterable#findKey()`

Returns the last key for which the `predicate`

returns true.

`findLastKey(predicate: (value?: T, key?: T, iter?: Iterable.Keyed<T, T>) => boolean,`

context?: any): T

`Iterable#findLastKey()`

Note: `predicate`

will be called for each entry in reverse.

Returns the key associated with the search value, or undefined.

```
keyOf(searchValue: T): T
```

`Iterable#keyOf()`

Returns the last key associated with the search value, or undefined.

```
lastKeyOf(searchValue: T): T
```

`Iterable#lastKeyOf()`

Returns the maximum value in this collection. If any values are comparatively equivalent, the first one found will be returned.

```
max(comparator?: (valueA: T, valueB: T) => number): T
```

`Iterable#max()`

The `comparator`

is used in the same way as `Iterable#sort`

. If it is not
provided, the default comparator is `>`

.

When two values are considered equivalent, the first encountered will be
returned. Otherwise, `max`

will operate independent of the order of input
as long as the comparator is commutative. The default comparator `>`

is
commutative *only* when types do not differ.

If `comparator`

returns 0 and either value is NaN, undefined, or null,
that value will be returned.

Like `max`

, but also accepts a `comparatorValueMapper`

which allows for
comparing by more sophisticated means:

`maxBy<C>(comparatorValueMapper: (value?: T, key?: T, iter?: Iterable<T, T>) => C,`

comparator?: (valueA: C, valueB: C) => number): T

`Iterable#maxBy()`

`hitters.maxBy(hitter => hitter.avgHits);`

Returns the minimum value in this collection. If any values are comparatively equivalent, the first one found will be returned.

```
min(comparator?: (valueA: T, valueB: T) => number): T
```

`Iterable#min()`

The `comparator`

is used in the same way as `Iterable#sort`

. If it is not
provided, the default comparator is `<`

.

When two values are considered equivalent, the first encountered will be
returned. Otherwise, `min`

will operate independent of the order of input
as long as the comparator is commutative. The default comparator `<`

is
commutative *only* when types do not differ.

If `comparator`

returns 0 and either value is NaN, undefined, or null,
that value will be returned.

Like `min`

, but also accepts a `comparatorValueMapper`

which allows for
comparing by more sophisticated means:

`minBy<C>(comparatorValueMapper: (value?: T, key?: T, iter?: Iterable<T, T>) => C,`

comparator?: (valueA: C, valueB: C) => number): T

`Iterable#minBy()`

`hitters.minBy(hitter => hitter.avgHits);`

```
isSubset(iter: Iterable<any, T>): boolean
isSubset(iter: Array<T>): boolean
```

`Iterable#isSubset()`

```
isSuperset(iter: Iterable<any, T>): boolean
isSuperset(iter: Array<T>): boolean
```

`Iterable#isSuperset()`