OrderedMap

A type of Map that has the additional guarantee that the iteration order of entries will be the order in which they were set().

type OrderedMap<K, V> extends Map<K, V>

Discussion

The iteration behavior of OrderedMap is the same as native ES6 Map and JavaScript Object.

Note that OrderedMap are more expensive than non-ordered Map and may consume more memory. OrderedMap#set is amortized O(log32 N), but not stable.

Construction

OrderedMap()

OrderedMap<K, V>(collection?: Iterable<[K, V]>): OrderedMap<K, V> OrderedMap<V>(obj: {[key: string]: V}): OrderedMap<string, V>

Static methods

OrderedMap.isOrderedMap()

OrderedMap.isOrderedMap(maybeOrderedMap: unknown): boolean

Members

size

The number of entries in this OrderedMap.

size: number

Overrides

Map#size

Persistent changes

set()

Returns a new OrderedMap also containing the new key, value pair. If an equivalent key already exists in this OrderedMap, it will be replaced while maintaining the existing order.

set(key: K, value: V): this

Overrides

Map#set()

Discussion

const { OrderedMap } = require('immutable') const originalMap = OrderedMap({a:1, b:1, c:1}) const updatedMap = originalMap.set('b', 2) originalMap // OrderedMap {a: 1, b: 1, c: 1} updatedMap // OrderedMap {a: 1, b: 2, c: 1}run it

Note: set can be used in withMutations.

merge()

merge<KC, VC>(
...collections: Array<Iterable<[KC, VC]>>
): OrderedMap<K | KC, V | VC>
merge<C>(
...collections: Array<{[key: string]: C}>
): OrderedMap<K | string, V | C>

Overrides

Map#merge()

delete()

Returns a new Map which excludes this key.

delete(key: K): this

Inherited from

Map#delete()

alias

remove()

Discussion

Note: delete cannot be safely used in IE8, but is provided to mirror the ES6 collection API.

const { Map } = require('immutable') const originalMap = Map({ key: 'value', otherKey: 'other value' }) // Map { "key": "value", "otherKey": "other value" } originalMap.delete('otherKey') // Map { "key": "value" }run it

Note: delete can be used in withMutations.

deleteAll()

Returns a new Map which excludes the provided keys.

deleteAll(keys: Iterable<K>): this

Inherited from

Map#deleteAll()

alias

removeAll()

Discussion

const { Map } = require('immutable') const names = Map({ a: "Aaron", b: "Barry", c: "Connor" }) names.deleteAll([ 'a', 'c' ]) // Map { "b": "Barry" }run it

Note: deleteAll can be used in withMutations.

clear()

Returns a new Map containing no keys or values.

clear(): this

Inherited from

Map#clear()

Discussion

const { Map } = require('immutable') Map({ key: 'value' }).clear() // Map {}run it

Note: clear can be used in withMutations.

update()

update(key: K, notSetValue: V, updater: (value: V) => V): this update(key: K, updater: (value: V | undefined) => V | undefined): this update<R>(updater: (value: this) => R): R

Inherited from

Map#update()

mergeWith()

Like merge(), mergeWith() returns a new Map resulting from merging the provided Collections (or JS objects) into this Map, but uses the merger function for dealing with conflicts.

mergeWith(
merger: (oldVal: V, newVal: V, key: K) => V,
...collections: Array<Iterable<[K, V]> | {[key: string]: V}>
): this

Inherited from

Map#mergeWith()

Discussion

const { Map } = require('immutable') const one = Map({ a: 10, b: 20, c: 30 }) const two = Map({ b: 40, a: 50, d: 60 }) one.mergeWith((oldVal, newVal) => oldVal / newVal, two) // { "a": 0.2, "b": 0.5, "c": 30, "d": 60 } two.mergeWith((oldVal, newVal) => oldVal / newVal, one) // { "b": 2, "a": 5, "d": 60, "c": 30 }run it

Note: mergeWith can be used in withMutations.

mergeDeep()

Like merge(), but when two compatible collections are encountered with the same key, it merges them as well, recursing deeply through the nested data. Two collections are considered to be compatible (and thus will be merged together) if they both fall into one of three categories: keyed (e.g., Maps, Records, and objects), indexed (e.g., Lists and arrays), or set-like (e.g., Sets). If they fall into separate categories, mergeDeep will replace the existing collection with the collection being merged in. This behavior can be customized by using mergeDeepWith().

mergeDeep(...collections: Array<Iterable<[K, V]> | {[key: string]: V}>): this

Inherited from

Map#mergeDeep()

Discussion

Note: Indexed and set-like collections are merged using concat()/union() and therefore do not recurse.

const { Map } = require('immutable') const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) }) const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) }) one.mergeDeep(two) // Map { // "a": Map { "x": 2, "y": 10 }, // "b": Map { "x": 20, "y": 5 }, // "c": Map { "z": 3 } // }run it

Note: mergeDeep can be used in withMutations.

mergeDeepWith()

Like mergeDeep(), but when two non-collections or incompatible collections are encountered at the same key, it uses the merger function to determine the resulting value. Collections are considered incompatible if they fall into separate categories between keyed, indexed, and set-like.

mergeDeepWith(
merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
...collections: Array<Iterable<[K, V]> | {[key: string]: V}>
): this

Inherited from

Map#mergeDeepWith()

Discussion

const { Map } = require('immutable') const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) }) const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) }) one.mergeDeepWith((oldVal, newVal) => oldVal / newVal, two) // Map { // "a": Map { "x": 5, "y": 10 }, // "b": Map { "x": 20, "y": 10 }, // "c": Map { "z": 3 } // }run it

Note: mergeDeepWith can be used in withMutations.

Sequence algorithms

map()

Returns a new OrderedMap with values passed through a mapper function.

map<M>(
mapper: (value: V, key: K, iter: this) => M,
context?: unknown
): OrderedMap<K, M>

Overrides

Map#map()

Example

OrderedMap({ a: 1, b: 2 }).map(x => 10 * x) // OrderedMap { "a": 10, "b": 20 }

Note: map() always returns a new instance, even if it produced the same value at every step.

mapKeys()

mapKeys<M>(
mapper: (key: K, value: V, iter: this) => M,
context?: unknown
): OrderedMap<M, V>

Overrides

Map#mapKeys()

see

Collection.Keyed.mapKeys

mapEntries()

mapEntries<KM, VM>(
mapper: (entry: [K, V], index: number, iter: this) => [KM, VM] | undefined,
context?: unknown
): OrderedMap<KM, VM>

Overrides

Map#mapEntries()

see

Collection.Keyed.mapEntries

flatMap()

Flat-maps the OrderedMap, returning a new OrderedMap.

flatMap<KM, VM>(
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
context?: unknown
): OrderedMap<KM, VM>

Overrides

Map#flatMap()

Discussion

Similar to data.map(...).flatten(true).

filter()

filter<F>(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): OrderedMap<K, F>
filter(
predicate: (value: V, key: K, iter: this) => unknown,
context?: unknown
): this

Overrides

Map#filter()

partition()

partition<F, C>(
predicate: (this: C, value: V, key: K, iter: this) => boolean,
context?: C
): [OrderedMap<K, V>, OrderedMap<K, F>]
partition<C>(
predicate: (this: C, value: V, key: K, iter: this) => unknown,
context?: C
): [this, this]

Overrides

Map#partition()

flip()

flip(): OrderedMap<V, K>

Overrides

Map#flip()

see

Collection.Keyed.flip

filterNot()

Returns a new Collection of the same type with only the entries for which the predicate function returns false.

filterNot(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): this

Inherited from

Collection#filterNot()

Discussion

const { Map } = require('immutable') Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0) // Map { "a": 1, "c": 3 }run it

Note: filterNot() always returns a new instance, even if it results in not filtering out any values.

reverse()

Returns a new Collection of the same type in reverse order.

reverse(): this

Inherited from

Collection#reverse()

sort()

Returns a new Collection of the same type which includes the same entries, stably sorted by using a comparator.

sort(comparator?: Comparator<V>): this

Inherited from

Collection#sort()

Discussion

If a comparator is not provided, a default comparator uses < and >.

comparator(valueA, valueB):

  • Returns 0 if the elements should not be swapped.
  • Returns -1 (or any negative number) if valueA comes before valueB
  • Returns 1 (or any positive number) if valueA comes after valueB
  • Alternatively, can return a value of the PairSorting enum type
  • Is pure, i.e. it must always return the same value for the same pair of values.

When sorting collections which have no defined order, their ordered equivalents will be returned. e.g. map.sort() returns OrderedMap.

const { Map } = require('immutable') Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => { if (a < b) { return -1; } if (a > b) { return 1; } if (a === b) { return 0; } }); // OrderedMap { "a": 1, "b": 2, "c": 3 }run it

Note: sort() Always returns a new instance, even if the original was already sorted.

Note: This is always an eager operation.

sortBy()

Like sort, but also accepts a comparatorValueMapper which allows for sorting by more sophisticated means:

sortBy<C>(
comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>
): this

Inherited from

Collection#sortBy()

Discussion

const { Map } = require('immutable') const beattles = Map({ John: { name: "Lennon" }, Paul: { name: "McCartney" }, George: { name: "Harrison" }, Ringo: { name: "Starr" }, }); beattles.sortBy(member => member.name);run it

Note: sortBy() Always returns a new instance, even if the original was already sorted.

Note: This is always an eager operation.

groupBy()

Returns a Map of Collection, grouped by the return value of the grouper function.

groupBy<G>(
grouper: (value: V, key: K, iter: this) => G,
context?: unknown
): Map<G, this>

Inherited from

Collection#groupBy()

Discussion

Note: This is always an eager operation.

const { List, Map } = require('immutable') const listOfMaps = List([ Map({ v: 0 }), Map({ v: 1 }), Map({ v: 1 }), Map({ v: 0 }), Map({ v: 2 }) ]) const groupsOfMaps = listOfMaps.groupBy(x => x.get('v')) // Map { // 0: List [ Map{ "v": 0 }, Map { "v": 0 } ], // 1: List [ Map{ "v": 1 }, Map { "v": 1 } ], // 2: List [ Map{ "v": 2 } ], // }run it

Deep persistent changes

setIn()

Returns a new Map having set value at this keyPath. If any keys in keyPath do not exist, a new immutable Map will be created at that key.

setIn(keyPath: Iterable<unknown>, value: unknown): this

Inherited from

Map#setIn()

Discussion

const { Map } = require('immutable') const originalMap = Map({ subObject: Map({ subKey: 'subvalue', subSubObject: Map({ subSubKey: 'subSubValue' }) }) })

const newMap = originalMap.setIn(['subObject', 'subKey'], 'ha ha!') // Map { // "subObject": Map { // "subKey": "ha ha!", // "subSubObject": Map { "subSubKey": "subSubValue" } // } // } const newerMap = originalMap.setIn( ['subObject', 'subSubObject', 'subSubKey'], 'ha ha ha!' ) // Map { // "subObject": Map { // "subKey": "subvalue", // "subSubObject": Map { "subSubKey": "ha ha ha!" } // } // }run it

Plain JavaScript Object or Arrays may be nested within an Immutable.js Collection, and setIn() can update those values as well, treating them immutably by creating new copies of those values with the changes applied.

const { Map } = require('immutable') const originalMap = Map({ subObject: { subKey: 'subvalue', subSubObject: { subSubKey: 'subSubValue' } } })

originalMap.setIn(['subObject', 'subKey'], 'ha ha!') // Map { // "subObject": { // subKey: "ha ha!", // subSubObject: { subSubKey: "subSubValue" } // } // }run it

If any key in the path exists but cannot be updated (such as a primitive like number or a custom Object like Date), an error will be thrown.

Note: setIn can be used in withMutations.

deleteIn()

Returns a new Map having removed the value at this keyPath. If any keys in keyPath do not exist, no change will occur.

deleteIn(keyPath: Iterable<unknown>): this

Inherited from

Map#deleteIn()

alias

removeIn()

Discussion

Note: deleteIn can be used in withMutations.

updateIn()

updateIn(
keyPath: Iterable<unknown>,
notSetValue: unknown,
updater: (value: unknown) => unknown
): this
updateIn(keyPath: Iterable<unknown>, updater: (value: unknown) => unknown): this

Inherited from

Map#updateIn()

mergeIn()

A combination of updateIn and merge, returning a new Map, but performing the merge at a point arrived at by following the keyPath. In other words, these two lines are equivalent:

mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this

Inherited from

Map#mergeIn()

Discussion

map.updateIn(['a', 'b', 'c'], abc => abc.merge(y)) map.mergeIn(['a', 'b', 'c'], y)

Note: mergeIn can be used in withMutations.

mergeDeepIn()

A combination of updateIn and mergeDeep, returning a new Map, but performing the deep merge at a point arrived at by following the keyPath. In other words, these two lines are equivalent:

mergeDeepIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this

Inherited from

Map#mergeDeepIn()

Discussion

map.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y)) map.mergeDeepIn(['a', 'b', 'c'], y)

Note: mergeDeepIn can be used in withMutations.

Transient changes

withMutations()

Every time you call one of the above functions, a new immutable Map is created. If a pure function calls a number of these to produce a final return value, then a penalty on performance and memory has been paid by creating all of the intermediate immutable Maps.

withMutations(mutator: (mutable: this) => unknown): this

Inherited from

Map#withMutations()

Discussion

If you need to apply a series of mutations to produce a new immutable Map, withMutations() creates a temporary mutable copy of the Map which can apply mutations in a highly performant manner. In fact, this is exactly how complex mutations like merge are done.

As an example, this results in the creation of 2, not 4, new Maps:

const { Map } = require('immutable') const map1 = Map() const map2 = map1.withMutations(map => { map.set('a', 1).set('b', 2).set('c', 3) }) assert.equal(map1.size, 0) assert.equal(map2.size, 3)run it

Note: Not all methods can be used on a mutable collection or within withMutations! Read the documentation for each method to see if it is safe to use in withMutations.

asMutable()

Another way to avoid creation of intermediate Immutable maps is to create a mutable copy of this collection. Mutable copies always return this, and thus shouldn't be used for equality. Your function should never return a mutable copy of a collection, only use it internally to create a new collection.

asMutable(): this

Inherited from

Map#asMutable()

see

Discussion

If possible, use withMutations to work with temporary mutable copies as it provides an easier to use API and considers many common optimizations.

Note: if the collection is already mutable, asMutable returns itself.

Note: Not all methods can be used on a mutable collection or within withMutations! Read the documentation for each method to see if it is safe to use in withMutations.

wasAltered()

Returns true if this is a mutable copy (see asMutable()) and mutative alterations have been applied.

wasAltered(): boolean

Inherited from

Map#wasAltered()

see

asImmutable()

The yin to asMutable's yang. Because it applies to mutable collections, this operation is mutable and may return itself (though may not return itself, i.e. if the result is an empty collection). Once performed, the original mutable copy must no longer be mutated since it may be the immutable result.

asImmutable(): this

Inherited from

Map#asImmutable()

see

Discussion

If possible, use withMutations to work with temporary mutable copies as it provides an easier to use API and considers many common optimizations.

Conversion to JavaScript types

toJS()

Deeply converts this Keyed collection to equivalent native JavaScript Object.

toJS(): {[key: string]: DeepCopy<V>}

Inherited from

Collection.Keyed#toJS()

Discussion

Converts keys to Strings.

toJSON()

Shallowly converts this Keyed collection to equivalent native JavaScript Object.

toJSON(): {[key: string]: V}

Inherited from

Collection.Keyed#toJSON()

Discussion

Converts keys to Strings.

toArray()

Shallowly converts this collection to an Array.

toArray(): Array<[K, V]>

Inherited from

Collection.Keyed#toArray()

toObject()

Shallowly converts this Collection to an Object.

toObject(): {[key: string]: V}

Inherited from

Collection#toObject()

Discussion

Converts keys to Strings.

Conversion to Seq

toSeq()

Returns Seq.Keyed.

toSeq(): Seq.Keyed<K, V>

Inherited from

Collection.Keyed#toSeq()

toKeyedSeq()

Returns a Seq.Keyed from this Collection where indices are treated as keys.

toKeyedSeq(): Seq.Keyed<K, V>

Inherited from

Collection#toKeyedSeq()

Discussion

This is useful if you want to operate on an Collection.Indexed and preserve the [index, value] pairs.

The returned Seq will have identical iteration order as this Collection.

const { Seq } = require('immutable') const indexedSeq = Seq([ 'A', 'B', 'C' ]) // Seq [ "A", "B", "C" ] indexedSeq.filter(v => v === 'B') // Seq [ "B" ] const keyedSeq = indexedSeq.toKeyedSeq() // Seq { 0: "A", 1: "B", 2: "C" } keyedSeq.filter(v => v === 'B') // Seq { 1: "B" }run it

toIndexedSeq()

Returns an Seq.Indexed of the values of this Collection, discarding keys.

toIndexedSeq(): Seq.Indexed<V>

Inherited from

Collection#toIndexedSeq()

toSetSeq()

Returns a Seq.Set of the values of this Collection, discarding keys.

toSetSeq(): Seq.Set<V>

Inherited from

Collection#toSetSeq()

Sequence functions

concat()

concat<KC, VC>(
...collections: Array<Iterable<[KC, VC]>>
): Collection.Keyed<K | KC, V | VC>
concat<C>(
...collections: Array<{[key: string]: C}>
): Collection.Keyed<K | string, V | C>

Inherited from

Collection.Keyed#concat()

[Symbol.iterator]()

[Symbol.iterator](): IterableIterator<[K, V]>

Inherited from

Collection.Keyed#[Symbol.iterator]()

Value equality

equals()

True if this and the other Collection have value equality, as defined by Immutable.is().

equals(other: unknown): boolean

Inherited from

Collection#equals()

Discussion

Note: This is equivalent to Immutable.is(this, other), but provided to allow for chained expressions.

hashCode()

Computes and returns the hashed identity for this Collection.

hashCode(): number

Inherited from

Collection#hashCode()

Discussion

The hashCode of a Collection is used to determine potential equality, and is used when adding this to a Set or as a key in a Map, enabling lookup via a different instance.

const a = List([ 1, 2, 3 ]); const b = List([ 1, 2, 3 ]); assert.notStrictEqual(a, b); // different instances const set = Set([ a ]); assert.equal(set.has(b), true);run it

If two values have the same hashCode, they are not guaranteed to be equal. If two values have different hashCodes, they must not be equal.

Reading values

get()

get<NSV>(key: K, notSetValue: NSV): V | NSV get(key: K): V | undefined

Inherited from

Collection#get()

has()

True if a key exists within this Collection, using Immutable.is to determine equality

has(key: K): boolean

Inherited from

Collection#has()

includes()

True if a value exists within this Collection, using Immutable.is to determine equality

includes(value: V): boolean

Inherited from

Collection#includes()

alias

contains()

first()

In case the Collection is not empty returns the first element of the Collection. In case the Collection is empty returns the optional default value if provided, if no default value is provided returns undefined.

first<NSV>(notSetValue?: NSV): V | NSV

Inherited from

Collection#first()

last()

In case the Collection is not empty returns the last element of the Collection. In case the Collection is empty returns the optional default value if provided, if no default value is provided returns undefined.

last<NSV>(notSetValue?: NSV): V | NSV

Inherited from

Collection#last()

Reading deep values

getIn()

Returns the value found by following a path of keys or indices through nested Collections.

getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown

Inherited from

Collection#getIn()

Discussion

const { Map, List } = require('immutable') const deepData = Map({ x: List([ Map({ y: 123 }) ]) }); deepData.getIn(['x', 0, 'y']) // 123run it

Plain JavaScript Object or Arrays may be nested within an Immutable.js Collection, and getIn() can access those values as well:

const { Map, List } = require('immutable') const deepData = Map({ x: [ { y: 123 } ] }); deepData.getIn(['x', 0, 'y']) // 123run it

hasIn()

True if the result of following a path of keys or indices through nested Collections results in a set value.

hasIn(searchKeyPath: Iterable<unknown>): boolean

Inherited from

Collection#hasIn()

Conversion to Collections

toMap()

Converts this Collection to a Map, Throws if keys are not hashable.

toMap(): Map<K, V>

Inherited from

Collection#toMap()

Discussion

Note: This is equivalent to Map(this.toKeyedSeq()), but provided for convenience and to allow for chained expressions.

toOrderedMap()

Converts this Collection to a Map, maintaining the order of iteration.

toOrderedMap(): OrderedMap<K, V>

Inherited from

Collection#toOrderedMap()

Discussion

Note: This is equivalent to OrderedMap(this.toKeyedSeq()), but provided for convenience and to allow for chained expressions.

toSet()

Converts this Collection to a Set, discarding keys. Throws if values are not hashable.

toSet(): Set<V>

Inherited from

Collection#toSet()

Discussion

Note: This is equivalent to Set(this), but provided to allow for chained expressions.

toOrderedSet()

Converts this Collection to a Set, maintaining the order of iteration and discarding keys.

toOrderedSet(): OrderedSet<V>

Inherited from

Collection#toOrderedSet()

Discussion

Note: This is equivalent to OrderedSet(this.valueSeq()), but provided for convenience and to allow for chained expressions.

toList()

Converts this Collection to a List, discarding keys.

toList(): List<V>

Inherited from

Collection#toList()

Discussion

This is similar to List(collection), but provided to allow for chained expressions. However, when called on Map or other keyed collections, collection.toList() discards the keys and creates a list of only the values, whereas List(collection) creates a list of entry tuples.

const { Map, List } = require('immutable') var myMap = Map({ a: 'Apple', b: 'Banana' }) List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ] myMap.toList() // List [ "Apple", "Banana" ]run it

toStack()

Converts this Collection to a Stack, discarding keys. Throws if values are not hashable.

toStack(): Stack<V>

Inherited from

Collection#toStack()

Discussion

Note: This is equivalent to Stack(this), but provided to allow for chained expressions.

Iterators

keys()

An iterator of this Collection's keys.

keys(): IterableIterator<K>

Inherited from

Collection#keys()

Discussion

Note: this will return an ES6 iterator which does not support Immutable.js sequence algorithms. Use keySeq instead, if this is what you want.

values()

An iterator of this Collection's values.

values(): IterableIterator<V>

Inherited from

Collection#values()

Discussion

Note: this will return an ES6 iterator which does not support Immutable.js sequence algorithms. Use valueSeq instead, if this is what you want.

entries()

An iterator of this Collection's entries as [ key, value ] tuples.

entries(): IterableIterator<[K, V]>

Inherited from

Collection#entries()

Discussion

Note: this will return an ES6 iterator which does not support Immutable.js sequence algorithms. Use entrySeq instead, if this is what you want.

Collections (Seq)

keySeq()

Returns a new Seq.Indexed of the keys of this Collection, discarding values.

keySeq(): Seq.Indexed<K>

Inherited from

Collection#keySeq()

valueSeq()

Returns an Seq.Indexed of the values of this Collection, discarding keys.

valueSeq(): Seq.Indexed<V>

Inherited from

Collection#valueSeq()

entrySeq()

Returns a new Seq.Indexed of [key, value] tuples.

entrySeq(): Seq.Indexed<[K, V]>

Inherited from

Collection#entrySeq()

Side effects

forEach()

The sideEffect is executed for every entry in the Collection.

forEach(
sideEffect: (value: V, key: K, iter: this) => unknown,
context?: unknown
): number

Inherited from

Collection#forEach()

Discussion

Unlike Array#forEach, if any call of sideEffect returns false, the iteration will stop. Returns the number of entries iterated (including the last iteration which returned false).

Creating subsets

slice()

Returns a new Collection of the same type representing a portion of this Collection from start up to but not including end.

slice(begin?: number, end?: number): this

Inherited from

Collection#slice()

Discussion

If begin is negative, it is offset from the end of the Collection. e.g. slice(-2) returns a Collection of the last two entries. If it is not provided the new Collection will begin at the beginning of this Collection.

If end is negative, it is offset from the end of the Collection. e.g. slice(0, -1) returns a Collection of everything but the last entry. If it is not provided, the new Collection will continue through the end of this Collection.

If the requested slice is equivalent to the current Collection, then it will return itself.

rest()

Returns a new Collection of the same type containing all entries except the first.

rest(): this

Inherited from

Collection#rest()

butLast()

Returns a new Collection of the same type containing all entries except the last.

butLast(): this

Inherited from

Collection#butLast()

skip()

Returns a new Collection of the same type which excludes the first amount entries from this Collection.

skip(amount: number): this

Inherited from

Collection#skip()

skipLast()

Returns a new Collection of the same type which excludes the last amount entries from this Collection.

skipLast(amount: number): this

Inherited from

Collection#skipLast()

skipWhile()

Returns a new Collection of the same type which includes entries starting from when predicate first returns false.

skipWhile(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): this

Inherited from

Collection#skipWhile()

Discussion

const { List } = require('immutable') List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) .skipWhile(x => x.match(/g/)) // List [ "cat", "hat", "god" ]run it

skipUntil()

Returns a new Collection of the same type which includes entries starting from when predicate first returns true.

skipUntil(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): this

Inherited from

Collection#skipUntil()

Discussion

const { List } = require('immutable') List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) .skipUntil(x => x.match(/hat/)) // List [ "hat", "god" ]run it

take()

Returns a new Collection of the same type which includes the first amount entries from this Collection.

take(amount: number): this

Inherited from

Collection#take()

takeLast()

Returns a new Collection of the same type which includes the last amount entries from this Collection.

takeLast(amount: number): this

Inherited from

Collection#takeLast()

takeWhile()

Returns a new Collection of the same type which includes entries from this Collection as long as the predicate returns true.

takeWhile(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): this

Inherited from

Collection#takeWhile()

Discussion

const { List } = require('immutable') List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) .takeWhile(x => x.match(/o/)) // List [ "dog", "frog" ]run it

takeUntil()

Returns a new Collection of the same type which includes entries from this Collection as long as the predicate returns false.

takeUntil(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): this

Inherited from

Collection#takeUntil()

Discussion

const { List } = require('immutable') List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) .takeUntil(x => x.match(/at/)) // List [ "dog", "frog" ]run it

Combination

flatten()

flatten(depth?: number): Collection<unknown, unknown> flatten(shallow?: boolean): Collection<unknown, unknown>

Inherited from

Collection#flatten()

Reducing a value

reduce()

reduce<R>(
reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown
): R
reduce<R>(reducer: (reduction: V | R, value: V, key: K, iter: this) => R): R

Inherited from

Collection#reduce()

reduceRight()

reduceRight<R>(
reducer: (reduction: R, value: V, key: K, iter: this) => R,
initialReduction: R,
context?: unknown
): R
reduceRight<R>(
reducer: (reduction: V | R, value: V, key: K, iter: this) => R
): R

Inherited from

Collection#reduceRight()

every()

True if predicate returns true for all entries in the Collection.

every(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): boolean

Inherited from

Collection#every()

some()

True if predicate returns true for any entry in the Collection.

some(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): boolean

Inherited from

Collection#some()

join()

Joins values together as a string, inserting a separator between each. The default separator is ",".

join(separator?: string): string

Inherited from

Collection#join()

isEmpty()

Returns true if this Collection includes no values.

isEmpty(): boolean

Inherited from

Collection#isEmpty()

Discussion

For some lazy Seq, isEmpty might need to iterate to determine emptiness. At most one iteration will occur.

count()

count(): number count(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): number

Inherited from

Collection#count()

countBy()

Returns a Seq.Keyed of counts, grouped by the return value of the grouper function.

countBy<G>(
grouper: (value: V, key: K, iter: this) => G,
context?: unknown
): Map<G, number>

Inherited from

Collection#countBy()

Discussion

Note: This is not a lazy operation.

Search for value

find()

Returns the first value for which the predicate returns true.

find(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V
): V | undefined

Inherited from

Collection#find()

findLast()

Returns the last value for which the predicate returns true.

findLast(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V
): V | undefined

Inherited from

Collection#findLast()

Discussion

Note: predicate will be called for each entry in reverse.

findEntry()

Returns the first [key, value] entry for which the predicate returns true.

findEntry(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V
): [K, V] | undefined

Inherited from

Collection#findEntry()

findLastEntry()

Returns the last [key, value] entry for which the predicate returns true.

findLastEntry(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown,
notSetValue?: V
): [K, V] | undefined

Inherited from

Collection#findLastEntry()

Discussion

Note: predicate will be called for each entry in reverse.

findKey()

Returns the key for which the predicate returns true.

findKey(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): K | undefined

Inherited from

Collection#findKey()

findLastKey()

Returns the last key for which the predicate returns true.

findLastKey(
predicate: (value: V, key: K, iter: this) => boolean,
context?: unknown
): K | undefined

Inherited from

Collection#findLastKey()

Discussion

Note: predicate will be called for each entry in reverse.

keyOf()

Returns the key associated with the search value, or undefined.

keyOf(searchValue: V): K | undefined

Inherited from

Collection#keyOf()

lastKeyOf()

Returns the last key associated with the search value, or undefined.

lastKeyOf(searchValue: V): K | undefined

Inherited from

Collection#lastKeyOf()

max()

Returns the maximum value in this collection. If any values are comparatively equivalent, the first one found will be returned.

max(comparator?: Comparator<V>): V | undefined

Inherited from

Collection#max()

Discussion

The comparator is used in the same way as Collection#sort. If it is not provided, the default comparator is >.

When two values are considered equivalent, the first encountered will be returned. Otherwise, max will operate independent of the order of input as long as the comparator is commutative. The default comparator > is commutative only when types do not differ.

If comparator returns 0 and either value is NaN, undefined, or null, that value will be returned.

maxBy()

Like max, but also accepts a comparatorValueMapper which allows for comparing by more sophisticated means:

maxBy<C>(
comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>
): V | undefined

Inherited from

Collection#maxBy()

Discussion

const { List, } = require('immutable'); const l = List([ { name: 'Bob', avgHit: 1 }, { name: 'Max', avgHit: 3 }, { name: 'Lili', avgHit: 2 } , ]); l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 }run it

min()

Returns the minimum value in this collection. If any values are comparatively equivalent, the first one found will be returned.

min(comparator?: Comparator<V>): V | undefined

Inherited from

Collection#min()

Discussion

The comparator is used in the same way as Collection#sort. If it is not provided, the default comparator is <.

When two values are considered equivalent, the first encountered will be returned. Otherwise, min will operate independent of the order of input as long as the comparator is commutative. The default comparator < is commutative only when types do not differ.

If comparator returns 0 and either value is NaN, undefined, or null, that value will be returned.

minBy()

Like min, but also accepts a comparatorValueMapper which allows for comparing by more sophisticated means:

minBy<C>(
comparatorValueMapper: (value: V, key: K, iter: this) => C,
comparator?: Comparator<C>
): V | undefined

Inherited from

Collection#minBy()

Discussion

const { List, } = require('immutable'); const l = List([ { name: 'Bob', avgHit: 1 }, { name: 'Max', avgHit: 3 }, { name: 'Lili', avgHit: 2 } , ]); l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 }run it

Comparison

isSubset()

True if iter includes every value in this Collection.

isSubset(iter: Iterable<V>): boolean

Inherited from

Collection#isSubset()

isSuperset()

True if this Collection includes every value in iter.

isSuperset(iter: Iterable<V>): boolean

Inherited from

Collection#isSuperset()
This documentation is generated from immutable.d.ts. Pull requests and Issues welcome.